
DEVISER: Datalog EValuator Integrated with SchemE

K. Lisovsky, A. Markov, A. Semenov

September 6, 2005

Abstract

We present programming system DEVISER: Datalog EValuator Integrated with SchemE.
DEVISER allows to store tuples in the database, write programs on general-purpose lan-
guage Scheme and write Datalog programs and query the database in the Scheme program
in natural manner. We discuss the design and implementation of our system, and show
how functional programming language Scheme contributes to the ease of Datalog language
usage.

1 Introduction

Deductive database systems are database management systems whose query language and (usu-
ally) storage structure are designed around a logical model of data. As relations are naturally
thought of as the ”value” of a logical predicate, and relational languages such as SQL are syn-
tactic sugarings of a limited form of logical expression, it is easy to see deductive database
systems as an advanced form of relational systems.

Deductive systems are not the only class of systems with a claim to being an extension
of relational systems. The deductive systems do however share with the relational systems the
important property of being declarative, that is of allowing the user to declare certain application
task recursively in terms of universe rather than specify the set of operations for solving that
task. Declarativeness is recognized as an important driver of the success of relational systems
[1].

We consider Datalog language [2] as the main language for querying database. Datalog is
more declarative and closer to databases than Prolog. Datalog as a logic programming language
is declarative language, another important kind of declarative programming is functional pro-
gramming. Logic programming is positioned in the next level abstraction in regard to functional
programming. We use functional approach in the implementation. It was interesting in what
way concepts of Datalog may be implemented in this approach, how they would look in func-
tional formalism. It was natural to expect that family Datalog and Scheme are rather similar,
that their tight integration, i.e. embedding Datalog sentences into base language, is possible.
Our contribution is to apply functional methods to the logic programming and database theory.
There is not any similar system. The code and documentation of the system is available from

1

http://sp.cmc.msu.ru/datalog

The paper is structured as follows. Section 2 describes the design of the Scheme interface.
Section 3 clarifies details of the implementation. Section 4 presents the results of real application
of our system. Section 5 reviews related works and Section 6 concludes.

2 Design

DEVISER embeds in Scheme a little language for creating and manipulating queries and for
obtaining new results from database by evaluating Datalog programs. Objects of Datalog such
as rules, queries, predicates, etc. can be treated as first class citizens, thus considerably raising
the level of abstraction programmer can use [3].

The DEVISER’s Datalog grammar is very simple.

〈program〉 −→ (〈rule〉 ...)

〈rule〉 −→ 〈predicate list〉
〈query〉 −→ 〈predicate list〉
〈predicate list〉 −→ (〈predicate〉 ...)

〈predicate〉 −→ (〈predicate-symbol〉 〈term〉 ...)

| 〈specific expression〉
〈term〉 −→ 〈constant〉 | 〈variable〉
〈variable〉 −→ 〈identifier〉 |
〈specific expression〉 −→ (dtlog-bpr! 〈binding expression〉)

| (dtlog-bpr! 〈computable expression〉)
〈computable expression〉 −→ (〈scheme function〉 〈computable expression〉 ...)

| identifier

| constant

〈binding expression〉 −→ identifier 〈computable expression〉
| identifier 〈aggregation function〉 〈predicate list〉 identifier

〈aggregation function〉 −→ count! | sum! | max! | min! | avg!

Pure Datalog [2] is too poor, it prevents from formulating many real application tasks.
Maybe it would be better to maintain Datalog purity analogously to ’pure’ standard SQL
ideas, but we prefer more realistic approach. We extend Datalog by adding computable built-in
predicates, aggregate functions over sets and binding expressions.

Computable expressions can be thought as usual predicates of database. But storing all
relations between two integers is extremely unprofitable. Therefore computable expressions are
evaluated by performing specified operations (Scheme functions) using instantiated variables.
But all computable expressions are under the safety restriction: all contained variables must be
instantiated.

When evaluator finds standalone computable expression (dtlog-bpr! computable expres-
sion), it evaluates this expression when it is possible and uses evaluated Boolean value. If

2

〈computable expression〉 is #t (Scheme value), this built-in predicate with current instantiated
variables becomes true. Otherwise it is false. There is an example of rule with computable
expression:

(map (lambda (x)
(list

(tuple-ref x 0)
(tuple-ref x 1)
(tuple-ref x 6)))

(dtlog-eval-query rules query edb-in))

Above s-expression is the Scheme analog to the following rule:

in range(X, A, B) :- int(X), int(A), int(B), A < B, X <= B, X >= A.

Binding expression is useful when you want to denote using some variable the whole big
computable expression or aggregate function. Computable expression can return all what you
want coherent to the whole inference or evaluation process. You can write Fibonacci rule:

((fibonacci N F) (dtlog-bpr! (> N 2)) (fibonacci N1 F1) (dtlog-bpr!
eq? N1 (- N 1)) (fibonacci N2 F2) (dtlog-bpr! eq? N2 (- N 2))
(dtlog-bpr! F (+ F1 F2)))

The same example in the traditional notation:

fibonacci(N,F) :- N > 2, fibonacci(N1,F1), N1 == N - 1,
fibonacci(N2,F2), N2 == N - 2, F = F1 +F2.

In the binding expression you can use aggregate function over the sets of facts. The function
aggregates the result of immediate evaluation of predicate list with current predicate values.
Therefore all variables of these predicate list must be instantiated. Aggregate functions are built
in DEVISER, but you can easily write your own function. The last identifier in that binding
expression with aggregate function indicates the accumulating or aggregating variable in the
predicate list.

((avg salary Dep Avg) (departments Dep) (dtlog-bpr! Avg avg!
((salary Dep S)) S))

Above s-expression is the Scheme analog to the following rule:

3

avg salary(Dep, Avg) :- departments(Dep), Avg = avg!([salary(,
Dep, S)], S).

It is easy to write Datalog program using Scheme. Application program interface consists
only of few functions dtlog-db, dtlog-rule, dtlog-query, dtlog-eval, dtlog-eval-query,
dtlog-print-result. There is their signature:

(dtlog-db filename)

Function dtlog-db takes as input the name of file containing extensional database under the
management of SQLite dbms. Function returns so-called ”connection” with database. Further
function calls take it as input to extract data.

(dtlog-rule predicate-list)
(dtlog-query predicate-list)

This is a pair of crucial functions. They work as the grammar analyzer. As input these
functions take the list of atoms. If function dtlog-rule is used, it is assumed that the first atom
is a head of rule’s body. Functions dtlog-rule and dtlog-query returns internal representation
of rule and query to program respectively.

(dtlog-eval program db)
(dtlog-eval-query program query db)

Functions dtlog-eval and dtlog-eval-query evaluate Datalog program by semi-naive
bottom-up method and query subquery (qsq) method respectively. Both functions take as
input the list of rules. Every rule in these list must be obtained by dtlog-rule call. Func-
tion dtlog-eval-query has another argument, obtained by function dtlog-query call. Both
functions return whole evaluated result. The result is the list of facts which can be printed by
function dtlog-print-result.

(dtlog-print-result idb)

The main functions of Scheme API are dtlog-rule and dtlog-query. They are written
with help of R5RS macros. It is possible to use any Scheme-expressions in appropriate Datalog
constructions. Binding of variables is made by Datalog’s principles, not by Scheme principles.
It means that you can write some Scheme functions of n arguments. Then in the evaluation
process of Datalog program each time when all variables in the expression are instantiated, this
Scheme function will be applied to these values of variables.

3 Implementation

When we say ’coupling’, we mean implementation of interface between two various subsystems,
logic programming system and dbms. Both systems preserve their independence, there is an

4

interface to transmit data from database to main memory of Datalog evaluator. This approach
is the simplest, but isn’t very efficient. We use exactly this approach because developing and
implementation of database management system with reliable, permanent and efficient data
storage. Using Datalog as a query language is very complex.

Tight coupling is a kind of coupling when there is permanent interaction between logic
subsystem and dbms. Every time when new facts are needed by logic inference, corresponding
query to dbms is used. Loosely coupling characterized by loading all potentially relevant facts
from database to main memory of logic subsystem before starting of evaluating logic program.

We use loose coupling. It consumes more memory, but we think that developing tightly
coupled systems involves tight integration with specific dbms and perhaps it involves dependence
on that dbms and impossibility of refusing and changing it.

At early stages of our project we use PLT Scheme [4]. But the following facts forced us to
use Bigloo Scheme [5]:

• at the moment there isn’t any fast portable interface with dbms, which would be standard
for Scheme;

• Bigloo Scheme has interface to various dbms;

• Bigloo Scheme is actually the fastest Scheme R5RS compiler.

Bigloo translates Scheme program to C, Java and MSIL. So you may create executables for
various platforms including Unix and Windows. But we have only R5RS code, dependence on
the Bigloo is appeared only in the interaction with dbms.

We use SQLite dbms [6], because it is less complicated, fast, and portable and it has a simple
API. For open research project it was the best choice.

Due to Bigloo capabilities DEVISER exists as standalone system too. A user can write
programs as text files using special grammar, give this text program and a SQLite database as
an input to DEVISER executable, and obtain result. Details can be found at [7]. All above
examples are written in Datalog, not in the presented Datalog in Scheme, are valid parts of text
programs.

4 DEVISER in action

Let’s consider DEVISER in action. We demonstrate our results as a practical illustration of
DEVISER’s work. We investigate two aspects of real applicability: performance and expressive
capabilities.

4.1 Performance

At the moment DEVISER has four calculating methods. There is three bottom-up methods
(Jacobi, Gauss-Seidel and generalized semi-naive) and one top-down method query subquery
(qsq).

In all benchmarks various extensional databases are used but these databases are created by
common principle. Fact is a pair of two random numbers from 1 to Max Facts constant. This

5

N
Total amount of facts Measured time (seconds)
Initial Inferred Jacobi Gauss-S s-i qsq

2 80 127 0.03 0.05 0.03 0.04
6 240 930 2.37 2.33 0.95 2.11
8 320 3818 52.83 53.07 20.33 51.56
10 400 12643 601.53 594.41 209.37 575.98
11 440 32864 - - 1602.66 -
12 600 59524 - - 3528 -

Table 1: Evaluation of program L1. Max Facts = 90000

constant defines maximum possible number of facts in the binary predicate. We present results
of the most interesting benchmark.

Measurements are done under Linux RedHat 9.0 at Intel Pentium IV 1.5 Ghz, 256 Mb RAM.
Program L1:

(dtlog-eval `(,(dtlog-rule ((anc X Y) (anc X Z) (par Z Y))
,(dtlog-rule ((anc X Y) (par X Y))) edb-in)

Program L1 demonstrates calculating capabilities of DEVISER. Results are presented in the
Table 1. Method qsq was applied to the query ((anc X Y)). Sign ’-’ denotes operation system
message ”Out of memory” after long computations.

Semi-naive method has demonstrated acceptable performance time with inferred facts up
to 5000. The authors think presented results confirm implementation’s success and possibility
of real application of DEVISER to the databases with reasonable size. Readers should keep in
mind that special optimization of Scheme code has not been made.

4.2 Expressiveness

For demonstration of expressive capabilities antitrust problem from [2] is used. Let’s briefly
describe the statement.

There are many companies which make goods. Goods are sold on specified markets. Each
company possesses the certain quota of market. Company can also control quota of market if
it has more than 50 % of stocks of another company, which has its own part of market. Many
countries use economic regulation, which does not allow the companies to control explicitly or
implicitly the quota of market more than specified. Companies constitute a trust when they
break the law.

We have 3 extensional predicates has shares(company1, company2, control), company(company,
market, quota), trust limit(market, limit). The first describes the relation that company1
has control % of stocks of company2. The second denotes that company has quota % of market.
The third describes that market has limit %. We need to know which of given companies lead
the trusts and what does quota they have.

6

The following Scheme program solves this problem with given edb filename of the database:

(define edb-in (dtlog-edb "trust.sqlite"))

(define rules `(
,(dtlog-rule

((controlled Comp2 Comp1)
(has shares Comp1 Comp2 N) (dtlog-evpr! (> N 50))))

,(dtlog-rule
((all controls Comp1 Comp2)
(controlled Comp2 Comp1)))

,(dtlog-rule
((all controls Comp1 Comp2)
(all controls Comp1 Comp3) (controlled Comp2 Comp3)))))

(define query
(dtlog-query ((company Comp1 Market Quota1)

(dtlog-evpr! Total1 sum! ((all controls Comp1 Comp2)
(company Comp2 Market Quota2)) Quota2)

(dtlog-evpr! Total (+ Total1 Quota1))
(trust limit Market Threshold)

(dtlog-evpr! (> Total Threshold)))))

Let EDB predicates contain following values:

has shares = ’((violet hyachint 51) (violet orchid 20) (violet
gardenia 30) (violet lily 51) (hyachint daisy 30) (hyachint iris 70)
(gardenia orchid 51) (fiat opel 2) (gardenia tulip 60) (lily rose
59) (tulip azalea 20) (tulip begonia 25) (begonia azalea 60))

company = ’((violet toys 8) (hyachint toys 7) (opel cars 33) (orchid
toys 13) (gardenia toys 0) (tulip toys 12) (ford cars 30) (daisy
toys 8) (iris toys 12) (lily toys 2) (rose toys 4) (azalea toys 19)
(begonia toys 15) (fiat cars 35))

trust limit = ’((toys 20) (cars 38) (gasoline 40))

Then simple Scheme expression

(map
(lambda (x)

(list
(tuple-ref x 0)
(tuple-ref x 1)
(tuple-ref x 6)))

(dtlog-eval-query rules query edb-in))

7

returns the result:

’((violet toys 33) (gardenia toys 25) (begonia toys 34))

Companies violet, gardenia and begonia form trusts on the toy market with actual quotas
33, 25 and 34 respectively.

5 Previous Related Work

Let’s briefly observe existent similar systems and note the position of DEVISER among them.
Survey is based on [1], [8]. In many respects DEVISER is designed under the influence of the
fact that there had not been any Datalog’s evaluator written at Scheme. Thus one might say
DEVISER is the first system based on Datalog and is written in Scheme and integrated with
Scheme. It is important because Scheme is very popular now in academic and research commu-
nity. Therefore DEVISER itself is research project, may be used in much others researches and
in many others research projects.

There are many logical programming systems, but most of them are based on Prolog lan-
guage. One of the most famous is XSB. There are variety Prolog’s evaluators written in Scheme.
One of the latest and the most interesting is Kanren [9].

There are only few systems based on Datalog. Comparison is made with DLV [10] and
LDL++ [11]. There are common features in these projects:

• these systems exist for a long time, contain implementation of many various methods
concerning Datalog: rewriting, optimization, negation, aggregation and others;

• these systems are written in traditional industrial programming languages, so in the per-
formance aspect DEVISER loses to these systems at the least 10 times at small databases.

• for research purposes you may freely use these systems, but source codes are inaccessible.

The lack of the good performance results or variety implemented methods applied to Data-
log is a consequence of limitations of our investigation. The presented work is student research
project, implemented by A. Semenov on System Programming Chair of Computational Math-
ematics and Cybernetics department of Moscow State Univercity.

But in contrast to considered systems with good performance and capabilities, DEVISER
is an open system. It is an advantage in using DEVISER and it should attract researchers in
their investigations.

6 Conclusion

We have presented Datalog EValuator Integrated with SchemE. DEVISER involves the ideas of
logic programming, database theory and functional programming. It allows natural embedding

8

of Datalog programs to the Scheme programs, using Scheme functions during the evaluation of
Datalog program and storing facts in the database management system.

We have demonstrated viability of our approach by performance benchmarks and useful
Scheme interface.

Future work assumes following code optimization, careful testing and benchmarking, con-
current algorithmization, solving application problems. Welcome interested readers to our page
http://sp.cmc.msu.ru/datalog.

References

[1] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive Database
Systems. Journal of Logic Programming, 23(2):125–149, 1993.

[2] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer, 1990.

[3] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and SchemeQL: Two Little Languages,
2002.

[4] PLT Scheme Homepage. http://www.plt-scheme.org/.

[5] Bigloo Scheme Homepage. http://www-sop.inria.fr/mimosa/fp/Bigloo.

[6] SQLite Homepage. http://www.sqlite.org/.

[7] DEVISER Homepage. http://sp.cmc.msu.ru/datalog.

[8] C. Zaniolo. The Handbook of Data Mining and Knowledge Discovery, chapter A Short
Overview of Deductive Database Systems. Oxford University Press, 1999.

[9] Daniel Friedman and Oleg Kiselyov. A Logic System with First-Class Relations. Unpub-
lished manuscript, http://www.cs.indiana.edu/l/www/classes/b521/qs.ps, May 2004.

[10] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Francesco Calimeri, Tina Dell’Armi, Thomas
Eiter, Georg Gottlob, Giovambattista Ianni, Giuseppe Ielpa, Christoph Koch, Simona Perri,
and Axel Polleres. The DLV System. In JELIA, pages 537–540, 2002.

[11] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The Deductive
Database System LDL++. TPLP, 3(1):61–94, 2003.

9

