Dynamic Augmentation of Generalized Rete Networks
for Demand-Driven Matching and Rule Updating

Ho Soo Lee and Marshall 1. Schor

IBM Thomas J. Watson Research Center,
P.O. Box 218, Yorktown Heights, NY 10598 USA

Abstract

This paper describes algorithms for dynamically augmenting an ex-
isting Rete network having non-empty partial match memories, and de-
scribe two uses of this operation: (1) adding a new pattern to the Rete
where it both shares match nodes with the existing Rete, and matches
existing data, and (2) implementing an efficient method of demand-
driven (as opposed to data-driven) pattern matching, which makes it
possible to match a pattern against existing data when demanded while
keeping that pattern out of the normal Rete pattern matching.

The algorithms described are applicable to generalized rete net-
works in which arbitrary pattern association is allowed. The trade-offs
involved in the design are discussed, including considerations for com-
pilation.

Al topic: Production systems, pattern matching

Domain area: Rete algorithm, Rete pattern matching

Language: Common Lisp

Status: Implemented in IBM Enhanced Common Lisp Production System
Effort: Approximately 1 person-year

Impact: Enables faster development and closer fit of language to problems for
pattern matching systems; demand-driven matching can be orders of magnitude
more efficient than traditional pattern matching.

1. Introduction

The Rete algorithm supports efficient matching between a large
number of patterns, and a large amount of slowly changing data [1]. It
was originally developed for OPSS by Charles Forgy and has been de-
scribed extensively in the literature [2, 3, 4]. In production systems using
the OPSS paradigm, the patterns arise from the left-hand-sides of rules.
The match activity in a Rete network occurs when data (represented
using Working Memory Elements or WMEs, an object-attribute-value
data model) are created, modified, or removed; changes are propagated
through the Rete network. The output of the Rete is a set of new
matched patterns, and a set of previously matched patterns now no
longer matching.

The data matched with the patterns is organized into instances of
classes. Each class has a predefined structure, with named attributes.
For example, the class inventory may have attributes item-name and
on-hand-quantity, etc. Instances of this class might represent a table
of items in an inventory.

Two Kinds of tests occur in patterns. One kind matches individuai
instances of classes. For example, a pattern may select inventory in-
stances whose on-hand-quantity is below a certain number. This
kind of pattern has one condition element, and can be written:!

(inventory on-hand-quantity: < 100)

When writing patterns, we use the syntax
(class-name attribute-name: optional-test value
attribute-name: optional-test value

Other kinds of patterns are built from joins of multiple condition
elements. For example, a pattern finding people having the same par-
ents might look like:

<c1> (person mother: <m> father: <f> name: <name>)
<c2> (person mother: <m> father: <f> name: ne <name>)

This pattern has two condition elements, labeled <c1> and <c2>.
The first one matches all people, and the second one matches all people.
The join of these two sets is subject to the specified inter-clement tests:
the mothers and fathers must be the same, while the names must be dif-
ferent. The meaning of join here is the same as its meaning in relational
data base technology. The tests associated with each condition element
individually are performed in the alpha part of the Rete; the join oper-
ations are done in the bera part of the Rete. When more than two join
operations are done, they may be done in many orders. OPSS restricts
this order to be left associative; that is, in a pattern of 4 condition ele-
ments, (c1) {(c2) (c3) (ca},first (c1) join (c2)is computed,
then that result is joined with (c3), and then that result is joined with
(cda).

In contrast, the generalized Refe network allows arbitrary association
of patterns; extra parentheses are used to denote arbitrary join associ-
ation or ordering. For example, the pattern

((c1) (c2)) ((c3) (c4))

represents joining (c1) and (c2), then (c3) and (c4), and finally
joining the two results together. For a complete description of the Rete,
see reference [3]. Match algorithm extensions that support correct op-
erations for generalized Retes are described in [5].

Rete nodes are classified into alpha and beta nodes in the literature.
The beta nodes follow the alpha nodes, and are characterized by having
partial match memory (also called result memory) preceding them. The
alpha nodes in contrast have no partial match memories preceding them.
In between the two kinds of nodes are the first partial match memory
nodes; beta nodes (with some exceptions) record the successful match
data in following result memory structures.

Rete algorithms achieve their efficiencies in two ways: they collect
pattern tests that occur in multiple patterns into a discrimination net-
work, sharing (where feasible) tests across multiple patterns, and they
preserve successful partial match results as sets of data-tuples matching
up to a node in the network. In subsequent join operations, the saved
partial match results are used to avoid recomputing partial match sets for
non-changing data.

This paper presents algorithms for dynamically adding new pat-
terns, which are not necessarily rules, to existing Rete networks in a way
that shares tests and exploits previous match results where feasible.
These algorithms are specialized to provide two basic functions:
adding/changing rules and a variation of pattern matching, called
demand-driven, where no match work is done for a particular pattern
until it is requested. This latter function corresponds to a traditional data
base query operation.

Attribute names end with a colon mark(:) and pattern variables are names like <x>. beginning with "'<" and ending with ">", as in OPS5.

CH2842-3/90/0000/0123$01.00 © 1990 IEEE

Although algorithms for adding new patterns to existing Retes are
well known, the algorithms presented here differ in that the added pat-
terns take advantage of existing partial match memories in the existing
Rete, and they work correctly when the Rete network structure is gen-
eralized to allow the join nodes in the beta portion of the Rete to be
grouped arbitrarily. Match algorithms supporting generalized Rete net-
works are described in detail elsewhere [5].

This paper first discusses the idea of compilation applied to Retes.
This enables a discussion of design trade-offs that shift computation to-
ward compile-time, achieving a more efficient run-time execution. The
concept of the mini-Rete is introduced. We describe the notion of
compilation as applied to Rete networks, and show the mini-Rete as a
unit of compilation. Section 2 describes what dynamic augmentation of
a Rete is, in terms of mini-Retes, and compares it to the OPSS imple-
mentation. The uses of dynamic augmentation are next described. Sec-
tion 3 presents the algorithms for implementing dynamic augmentation
and their variations and design trade-offs. Section 4 addresses how
non-shared portion of mini-Retes are updated.

1.1. Rete Compilation

When Retes are built from user written patterns, the pattern is
syntactically processed to create Rete structure. This structure may then
be further compiled. We use compilation as an abstraction of any oper-
ation that moves significant parts of the Rete computation out of the
run-time environment and into an one-time operation, done when the
pattern is first ""processed". This can include moving the "interpreting"
of data structures into machine language.

In many "fully compiled" versions of the Rete network, all of the
steps involved in processing a change through a Rete are converted into
corresponding machine language. Such systems usually cannot merge
new patterns compiled separately with existing patterns, since this would
involve merging fragments of machine language. The trade-offs we
consider are based on a compilation model that keeps Rete nodes as data
structures, although the test fragments are indeed pieces of compiled
code. This hybrid approach achieves almost all of the efficiency of fully
compiled methods, while maintaining the ability to dynamically augment
existing Rete structure with new patterns.

1.2. Mini-Retes

Mini-Retes were first described in [4]. We define a mini-Rete as the
Rete corresponding to one pattern. Patterns in turn consist of one or
more condition elements, each of which can match a particular WME.
A typical pattern may look like this:

(defrule reorder-item-rule
when
(reorder item-name: <c>
(inventory item-name: <c>
on-hand-quantity: <a> § <
item-name: <c>

valid: yes

<g>)
-(hold status: active)

then

(issue-reorder <c> <q> <a>)) ;function call with 3 args

« root node
class=reorder class=inventory class=hold < top node
valid=YES status=ACTIVE <~ alpha test(s)
« first memory
]
—] join node
NOT
B —
D < bottom node
Figure 1. Mini-Rete compiled from the match pattern of a
sample rule.

threshold: <qg>)

124

The left-hand-side pattern of the rule reorder-item-rule has
three condition elements. The last one is negated, meaning the pattern
is satisfied only when no WMEs can be found matching the last pattern.
Each pattern starts with the name of the class (for example, reorder)
and can have several attribute tests. This pattern says when there is a
valid reorder for an item and the number on-hand of that item is below
a threshold, and there is not an active hold on that item, then issue a re-
order for the item. The mini-Rete corresponding to this pattern is shown
in Figure 1.

All Retes have a root node where data change tokens enter for
match processing. The top nodes discriminate initially on the class of the
WME (usually using a hash table keyed on the class name). Bottom
nodes process the result of completing the pattern matching. bottom
nodes are production nodes for rules, as in OPSS, or special MATCH
nodes, for demand-driven matching. There is one bottom node per
mini-Rete.

Following the alpha tests, the first partial result memory appears
and stored in the first memories (it is also called the alpha memories in
other literatures). This paper presumes the existence of first memory
nodes at the juncture between the alpha and beta portions of the Rete.
In Figure 1, the nodes, M1, M2 and M3, represent the first memories;
the nodes, M12 and M123, are join nodes that include result memories
storing partial match results. It also presumes that all Rete nodes have
pointers to their predecessor (or for join nodes, their left and right
predecessor) nodes. These predecessor links are used in traversing the
network as described later.

In this example, the first AND join node includes the test for
equality between the item-name attribute of reorder and the item-
name attribute of item, and also a test for on-hand-quantity being
below the threshold point.

Mini-Retes are formed as in OPSS5. The condition elements may
be arbitrarily grouped in other than left associative manner, giving rise
to a generalization of the Rete where both the left and right inputs to a
join node may themselves come from join nodes. See references [4,5]
for a detailed discussion of generalized Rete networks. Where possible,
we merge common tests used in the patterns, to both save space when
the pattern is compiled, and also to simplify the merge algorithm.

For example, the following pattern has class A self-merged (that is,
the test for the class = A is shared for two paths) as shown in Figure 2.

(a x: 1)

(b ...)

(a y: 2)

<= root node

class=B

| 1
|

class=A <+ top node

2 « alpha test(s) -

v

i

<+ first memory

:] AND join node

Figure 2. Example of self-merged mini-Rete.

The mini-Rete is the smallest unit of compilation; sets of mini-
Retes, merged together, can also be a unit of compilation. When a
mini-Rete is compiled, it is converted to a fast-loadable data structure
where some parts of the nodes are compiled to machine language re-
presenting particular tests being done at the node. The general code that
implements the various node types can be compiled separately, and
shared for all nodes of that type.

R

With this model of Rete compilation, we can proceed to a de-
scription of dynamic augmentation.

2. Dynamic Augmentation

In OPSS, as new rules are processed, the Rete corresponding to
each rule pattern is incrementally built and merged together with other
patterns. The Rete representing already merged patterns we designate
as the existing main Rete. As each pattern is processed, it is merged with
this main Rete. We separate this process into its two steps:

1. building the mini-Rete corresponding to a new pattern, and
2. merging that mini-Rete with an existing main Rete.

Dynamic augmentation is the step of taking a mini-Rete and at-
taching it to the existing main Rete. It consists of two parts:

Step 1 Merging the mini-Rete with the main Rete so as to achieve
sharing of common pattern matching tests where feasible.

Step 2 Initializing the part of the mini-Rete that is not sharable with the
main Rete so that it matches any existing WME data.

This process is similar to the OPS5 implementation, with two sig-
nificant differences:

1. OPSS does not initialize the non-shared part of the newly built Rete
with existing partially matched data.

2. The OPSS Rete structures are restricted to left associative Rete
structures, not generalized ones.

We next motivate dynamic augmentation by describing several uses.

2.1. Functional Uses of Dynamic Augmentation

An earlier paper describes the functional uses of dynamic augmen-
tation [4]. ‘We review the uses here. The obvious use is to allow addition
of new rules while running a system, where the new rules match existing
data. This allows a productive incremental development approach,
where the developer may fix bugs in rules in the middle of a run. In ad-
dition, systems can be constructed which use programming constructs to
add or modify rules while running.

Dynamic augmentation can also form the basic implementation of
a demand-driven pattern match function. By demand-driven, we mean
pattern matching where no work is done for the particular pattern until
it is "demanded". Note that this is a very common function in data base
systems; it corresponds to a relational data base query operation. It
differs significantly from normal Rete operations in that the Rete
normally does all pattern matching only when data changes, on behalf
of all patterns present in the Rete. We show a variation of dynamic
augmentation that efficiently computes pattern matching on demand,
making use of preexisting partial match results that may be already
present in the existing main Rete. This kind of demand-driven pattern
matching was observed in one application to reduce the computational
time for a problem by over an order of magnitude [4].

An advantage of implementing demand-driven matching in this
manner, besides potential efficiency gains, is uniformity. The program-
mer need learn and write only one kind of pattern. If written as the
pattern of a rule, it may be used to trigger the rule when data changes
cause the pattern to match (data-driven matching). If written in an on-
demand context, it may be used to extract the current set of matching
data when requested (demand-driven matching).

In the Enhanced Common Lisp Production System product [6], se-
veral forms are provided for expressing demand-driven matches. They
each take patterns which are identical to the patterns that may be written
for rule triggering. The principal ones are:

MATCH This takes a pattern and a set of forms to evaluate. The pattern
is used to extract a list of matching WME sets (each set has one
WME per non-negated condition element) and the forms are
evaluated with variables bound to lists of matched data.

125

FOR-ALL-MATCHES-OF This takes the same arguments as MATCH.
It then iteratively executes its set of forms, rebinding the vari-
ables at each iteration to the next set of WME data, and iterates
for each set of matched data.

Additional forms such as remove-match also use patterns but are
expanded in terms of the basic match operations. The following example
does a demand-driven pattern match, iterating over all matches of items
needed reordering.

(defrule reorder-item-demand-driven-rule

when
<g> (goal type: list-reorder-items)
then
(for-all-matches-of
(reorder item-name: <c> valid: yes threshold: <g>)

(inventory item-name: <c>
on-hand-quantity: <a> & < <g>)

-(hold item-name: <c> status: active)

((hs)ay ""Reorder item' <c>)) ;print items

(remove <g>}) ;when this rule fires, goal is removed

This rule is triggered when there is the single instantiation of WME
of the class goal. Neither WMEs of the class reorder nor those of the
class inventory are used as triggers for this rule; they are only refer-
enced and matched on demand, when this rule fires. Notice that the
mini-Rete compiled by the on-demand match form is reused when this
rule fires again later. By virture of this demand-driven matching we can
save much of the unnecessary pattern matching work, which often re-
sults in large performance improvements in production systems.

2.2. Outline of Dynamic Augmentation Algorithms

The dynamic augmentation algorithms take as input a mini-Rete
representing a new pattern, and an existing main Rete, having perhaps
non-empty partial match memories.

The first step merges the mini-Rete with the main Rete, while re-
cording where the mini-Rete starts to differ from the main Rete. This
information is recorded in data structures called synapses.

The second step matches existing WMEs and partially matched re-
sults from the main Rete against the portion of the pattern in the mini-
Rete that differed from the main Rete, using the synapses to specify the
connection paths between the existing main Rete and the non-shared
parts of the mini-Rete.

2.3. Synapse Connections

There are two kinds of synapses: those representing connections
from an existing main Rete node in the alpha portion of the Rete, and
those representing connections from a beta node in the main Rete.
These are called alpha and beta synapses, respectively.

2.4. Variations in the Augmentation Algorithms

When a new mini-Rete is attached via the augmentation algorithms,
it is attached permanently or temporarily. By permanent, we mean at-
tachment such that future WME data changes propagated through the
Rete are sent through the new mini-Rete portion as well. This is the kind
of augmentation adding a new rule would entail, for example.

Temporary attachment means that the non-shared part of the
mini-Rete is not attached as successor nodes to main Rete nodes. Future
WME data changes, in this case, are not propagated into the new mini-
Rete portion. This kind of augmentation is used to support demand-
driven pattern matching activity; it has the property that unless the
match is requested, no matching work is done for the unique part of the
match pattern.

Both temporary attachment and permanent attachment use the
same merge algorithm and create the same synapses. Normally, the
synapses are discarded after they are used to initialize the non-shared
part of the mini-Rete. In one case, however, they are preserved. This
is the case of a temporary attachment, where it is presumed that the on-
demand pattern may likely be requested again (that is, the same query
operation may be executed multiple times, each time perhaps returning
a different answer, based on the current WME data). In this case, the

synapses created by the merge of the mini-Rete with the main existing
Rete are preserved, and on subsequent match operations for this pattern,
the merge step can be skipped.

When the synapses are preserved, algorithms that might delete main
Rete nodes as unused (perhaps in response to a delete-rule function)
must be kept aware of what Rete nodes have synapse connections to
on-demand matches that are being kept for possible reuse.

2.5. Delaying the Merge Operation for Demand-Driven Matches

When an on-demand match form is compiled, it generates a mini-
Rete, in the same manner as a rule pattern.

When a rule is loaded, the mini-Rete representing the rule’s trig-
gering pattern is merged with any existing main Rete, so the rule can
become available to be triggered. In contrast, when an on-demand form
is loaded, there is a choice of when to merge the mini-Rete representing
the pattern with the existing main Rete. We choose to delay the merge
step until the match is first called for. This allows a maximal amount of
normal Rete structure to be accumulated in the main Rete prior to
merging the on-demand mini-Rete. This increases the chance that some
other pattern in the main Rete may in fact be already computing parts
of the demand-driven match.

3. Merging Mini-Retes with Generalized Rete Struc-
tures

We now describe the merge algorithm that merges a self-joined
mini-Rete with an existing main Rete, where multiple match condition
elements may be left and/or right associated (the generalized Rete
structure).

Before presenting the merge algorithm in detail, a simple example
is provided to see briefly how mini-Retes are merged into the existing
main Rete. Consider the four patterns each of which is compiled into the
mini-Rete shown in Figure 3.

(a) ((b) (c)) j;right associative
Match pattern P2 c)

Match pattern P (b) (a)
Match pattern Ph: (c) (d)

e TTT?T?

AND join node
NerJ
- - -

Npt Np2 Np3 Np
(a) (b) (c) (d)

Match pattern P

< bottom node
(MATCH node)

Note: the root node, top nodes and memories are not shown.

Figure 3. Four mini-Rete networks constructed from match
patterns.
Na
[‘ET# ghla @Fﬁﬂﬁ
r—v 1 Tn l—"l‘_L’r—'l NS

NZI—{—I NAL’—I ‘—i—lNZ NNL‘—I l—‘—INZ
(0 N 0 O A | 0 I 2 II

Npl Np2 Np3 Npl Np2 Np3 Npl Np2 Npk
(a) (b) (c)
Note: the root node, top nodes and memories are not shown.
Figure 4. Resulting main Rete networks after adding match
patterns in an incremental manner.

When we have multiple mini-Retes to merge, we merge them with
the existing main Rete in an incremental manner, i.e., one after another,
resulting in a new main Rete for each mini-Rete merge. As soon as a
mini-Rete node is determined to be merged, it is coupled to the main
Rete. Hence, a main Rete may be dynamically modified during the
merge process.

Examples of the dynamic augmentation of Retes are depicted in
Figure 4. It is assumed that the initial main Rete is being built from the
pattern P1 only as shown in Figure 3(a). Each Rete in (a), (b) and (c)
depicts the resulting main Retes after merging each mini-Rete, P2, P3
and P4, to the existing main Rete in an incremental manner. Merging
the pattern, P2, augments the main Rete in Figure 4(a), where the node
N1 merges the node N3 in the mini-Rete in Figure 3(b). Only the bot-
tom node Np2 eorresponds to the non-shared Rete portion. When the
pattern P3 is added no join node is shared. Only the first memory nodes,
Na and Nb, are shared and the join node N4 in the mini-Rete shown in
Figure 3(c) is augmented to the main Rete. The non-shared Rete in this
case consists of N4 and the bottom node Np3. Unlike the above two
merge cases, adding the pattern, P4. no top node of class D appears in
the main Rete. The new top node of the class D is therefore augmented
to the main Rete. The join node NS in Figure 3(d) is also augmented
to the main Rete. The non-shared Rete includes N5, Np4, and the top
node of D.

A mini-Rete is merged with the existing main Rete such that maxi-
mal node sharing is achieved. The merge step attempts to find nodes in
the main Rete that duplicate the match node functions in the mini-Rete,
in the same sequence from top entry node(s). We describe an algorithm
that looks for mergable nodes under the simplifying constraint of not
reordering commutative tests. For example, the two patterns

(class-a attributel: 3 attribute2: 4)

and
(class-a attribute2: 4 attributel: 3)

could be merged provided the Retes associated with the chain of alpha
tests could be reordered. An extension of this algorithm could be done
that would include this aspect, but we exclude this from the present pa-
per.

In describing the following algorithm we denote the final node of a
mini-rete that token propagation can reach as the bottom node. Top
nodes are nodes where WME changes of particular classes enter the
Rete.

We consider a Rete structure having multiple top nodes, one per
class, perhaps including one for an indeterminate class. (The indeter-
minate class is used for patterns having no class specified. For example,
the pattern (status: active) means all WMEs of any class having
a status attribute whose value is active.). The merge algorithm
walks the mini-Rete. The output of this walk is twofold: a set of
synapses are created that record the point(s) at which the mini-Rete
starts to differ from sharable portions in the main Rete, and the mini-
Rete nodes (and under some conditions, the main Rete nodes) are up-
dated to reflect the merged result.

3.1. Three Degrees of Main Rete Connection to a Mini-Rete

If a new rule triggering pattern is being added to the main Rete, the
main Rete is updated at the synapse points to add the non-shared mini-
Rete nodes as successors of the last mergable nodes in the main Rete.
This insures that future data changes are propagated through the unique
non-shared part of the new mini-Rete.

If the mini-Rete is a demand-driven pattern, the main Rete is not
modified to attach the non-shared mini-Rete nodes as successors of the
last mergable main Rete node. This prevents future data changes from
doing match work on behalf of the demand-driven pattern when the data
changes.

If the mini-Rete represents a demand-driven pattern that may be
reused, the main Rete is modified to record which nodes could be re-
quested (when a reuse occurs) to serve as inputs to the non-mergable
part of the mini-Rete. This marking is used only to prevent deletion of

the main Rete nodes, should all other uses of the nodes vanish (due
perhaps to rules being deleted).

3.2. Determining Mergability of Individual Mini-Rete Nodes

Rete nodes can be merged if they perform the same function and
have all their predecessors merged. The same function means, more
precisely:

e The nodes are the same type (e.g., alpha-test, AND-join,
NOT-join, etc.).
If the nodes contain tests, the tests are the same.
If the nodes are top nodes, the classes they represent are the same.

In the following discussion, we use the term non-mergable node to
denote the first non-mergable node in a mini-Rete along some path from
a top node. Of course, any successors of this node are also non-
mergable, but we are interested in particular in the first one along a path.

The Retes depicted in Figure 5, together with Figure 6 showing
detailed merge process, will be used to show several aspects of the
merging process discussed in the remainder of this paper. In
Figure 5(a), assuming that the first memory node, N2, and beta nodes,
N4 and NS5, be the first non-mergable nodes leads to node linkings and
creation of synapses depicted in (b). In this figure the bidirectional ar-
rows indicate linking from predecessor to successor and vice versa (In
the previous figures, only forward links were drawn for simplicity).

Main Rete

Mini—Rete

«- top node

hE g

To other nodes (not shown)

Note: root node not shown

(a) Retes before merge: it is assumed that Na’' and N3 are merged
with the main Rete nodes, Na and NI, respectively.

Na* wo'[e]

(b) Retes after merge
Alpha synapse: Na'
Beta synapses: (N4 N1 none) and (N5 N1 NT)

Figure 5. Merge of a mini-Rete with main Rete, showing node

linking and synapses.

3.3. Walking the Mini-Rete

The mini-Rete is walked from the bottom node to the various top
nodes, in a depth-first, left-to-right manner. During this walk, some
nodes may be reached multiple times, due to the mini-Rete being self-
merged. The algorithm first walks up to the top nodes; the merge proc-
essing is done as the walker returns back down. For instance, the
mini-Rete nodes in Figure 5(a) are visited in the order they appear in

Returning Creation of
Sequence| Node Successful-| Synapses Node
Visited|Merge Flag Linking
Alpha Beta
1 N6
2 NG
3 N2
4 Na' TRUE
5 N2 Y| FALSE Na' L
6 N& ¥
N3
8 Nb' TRUE
9 N3 7| TRUE
10 N4 Y| FALSE (Nb N1 none)| NL2
1" N6 ¥
12 NS
IR
1% b TRUE
15 N3 V| TRUE
16 N5 ¥
17 N3
18 Nb' TRUE
19 N3 ¥| TRUE
20 NS ¥ FALSE (NS NT N1) [NL3, NL&
21 N6 ¥| FALSE
L nodes marked with "Y' denotes that they are
revisited while walking down from top nodes.
Figure 6. A table showing the merge process of a mini-Rete.

the first column of of Figure 6. When a top node is reached, it is merged
with a main Rete top node of the same class (if one doesn’t exist, it is
created). This merge is always successful.

Node merging is defined recursively, using the function MERGE
which takes one argument: a mini-Rete node. Initially this is the bottom
node of the mini-Rete. MERGE returns two values, a flag indicating
successful merge of the argument node, and a pointer to the merged
node (if merged) or a pointer to the original argument node.

As MERGE does its work, it has three kinds of side effects:

1. it records the connection points between the main Rete and the first
non-mergable nodes in the mini-Rete, using synapses,

2. it updates the pointers in the first non-mergable mini-Rete beta
nodes that refer to partial result memories to point to the corre-
sponding main Rete nodes having the partial result memories, and

3. (optionally) it updates the main Rete to include the first non-
mergable nodes as successors, when attaching a pattern perma-
nently.

A mini-Rete can have many connection points with a main Rete.
Each can occur along a path from the bottom node to the potentially
many top nodes. We discuss each connection point individually, while
realizing there may be many of them in any particular mini-Rete merge.

3.4. Constructing Synapses

The first non-mergable node in a mini-Rete path can occur prior to
any partial result memory. This happens, for example, when a new alpha
test not already existing in the main Rete is present in the mini-Rete. In
this case, an alpha synapse is created which points to the top node of the
mini-Rete reachable from the non-mergable node. Because the alpha
portion of a Rete has no join nodes, there is a unique top node that leads
to this non-mergable node. In the subsequent update step, this alpha
synapse specifies which class of WMEs are to be sent through the mini-
Rete’s top node. WMEs are then sent through the mini-Rete’s top node
to initialize just the mini-Rete, without affecting the main Rete. Alpha
synapses record two pieces of information:

1. the class of the top node, and
2. a pointer to the top node in the mini-Rete

127

For example, in Figure S(b), the top node Na’ in the mini-Rete becomes
an alpha synapse.

When the first non-mergable node in a mini-Rete path occurs after
a point where a partial match memory exists in the main Rete, a beta
synapse is constructed to record this connection point. A beta synapse
consists of the following three pieces of information:

1. a pointer to a mini-Rete node (called drain node) that is the first
non-mergable node in a chain of nodes from a top node;

2. a pointer to the last successfully merged node (called right source
node) in the main Rete which is the logical right-input predecessor
of the above mini-Rete node; and

3. a pointer to the last successfully merged node (called left source
node) in the main Rete which is the logical left-input predecessor
of the above mini-Rete node.

A beta synapse will be denoted by an ordered list of three items
such as:

(drain node, right source node, left source node)

When a beta join node is the first non-mergable node, it may have
one or both of its predecessors be merged. If only its left predecessor is
merged, then the beta synapse records none for its right source node,
and vice versa. As an example, again see Figure 5. If N4 be the first
non-mergable node a beta synapse (N4 N1 none) is created. Similarly,
another beta synapse (N5 N1 N1) is created if NS is also the first non-
mergable one.

3.5. Determining Mergable Nodes

When MERGE is called, it first calls itself recursively for the pred-
ecessor (or predecessors, in the case of join nodes). These calls each
return a successful-merge flag, and a pointer to the main Rete node if a
merge occurred. The successful-merge flag is computed based on the
diagram in Figure 7.

Are all input successful-merge flags = TRUE 7
yes | no

{path-1) (path-2)

Do merge test
Is it successful ?

No merge test needed

o | e
‘ (path-3)

(path-4)

Return TRUE Return FALSE

Figure 7. Flow of the successful-merge flag and merge test.

Once a non-mergable node is found, the successful-merge flag is
returned as FALSE for all lower (successor) nodes. That is, if at a par-
ticular node, every predecessor of the node is not merged, then MERGE
returns, doing nothing, with the successful-merge flag FALSE (path-2
in Figure 7). Note that the node merge is determined by predecessor
nodes and the node itself, not by the successor nodes.

If at a particular node, all predecessors of the node are merged, the
current node is tested to see if it can be merged with the current main
Rete (path-1). In this process, a scan is made of the successors of the
merged predecessors of the node for a node which has the same function
and tests as the current mini-Rete node. If such a node is found, then
MERGE returns a pointer to it, and also sets the successful-merge flag
TRUE (path-3). Otherwise, it treats the current mini-Rete node as a
non-mergable node of this path with the successful-merge flag FALSE
(path-4).

If at a particular two-input node, only one of the predecessors is
merged, then the current node cannot be merged; it is treated as a non-
mergable node with the successful-merge flag FALSE (path-2).

There is one final non-obvious case to consider. This case occurs
when the walk of the mini-Rete revisits nodes already processed for
merging. This occurs when the mini-Rete is self merged, and has several

128

paths that converge together as the mini-Rete is walked toward the top
node(s). This case is detectable by examining the predecessor pointer(s)
of the mini-Rete node and seeing if they point to predecessor nodes re-
turned by the recursive call to MERGE. This means that the node was
already determined to be a non-mergable node along a previous path
from the mini-Rete bottom node. In this case, no further work should
be done for this path, so the merge routine returns the current-node and
a false successful-merge flag.

As an example of determining mergable nodes in terms of the
successful-merge flag, see the mini-Rete nodes in Figure 5(a), and the
successful-merge flags returned while walking down the mini-Rete
shown in Figure 6.

3.6. Processing Non-Mergable Nodes
When the non-mergable node is discovered, two things happen:

1. A synapse is built that records the connection point
2. Node linking occurs

The kind of node linking varies according to what function is being
implemented. In all cases, however, the mini-Rete node predecessor
pointer is updated to point to the main Rete node; in consequence, the
predecessor node in the mini-Rete can no longer be accessed from the
first non-mergable node. For example, consider the predecessor point-
ers in the original node links, OL1, OL2, OL3, and OL4, shown in Fig-
ure 5(a). When new synapses are created they are updated so as to
point the main Rete merge nodes, Na, N1, N1, and N1, respectively, as
depicted in Figure 5(b) while creating new node links, NL1, NL2, NL3
and NL4.

When a new rule pattern is being added, the main Rete node suc-
cessor list is augmented with the new mini-Rete node. If an on-demand
pattern is being processed, this is not done, so that no match work is
done for the on-demand pattern, when future data changes are pushed
through the Rete. For beta nodes, if an on-demand pattern may be re-
used, the main Rete beta node is modified to note that this synapse is a
potential future user of its partial result memory.

Duplicate synapses may occur when there are multiple paths from
a bottom node to the same non-mergable node. In the case of alpha
synapses, since the alpha synapse points to a top node in the mini-Rete,
different alpha merge paths could also create identical alpha synapses.
These duplicates are detected by the merge algorithm earlier so the final
list of synapses has no duplicates.

4. Update the Non-Shared Mini-Rete Portion

Having a set of synapses for an attached mini-Rete, we now de-
scribe how they are used to update the non-merged part of that Rete.
For this purpose we use RULE-Match (Right-Update-Left-Extended)
algorithm described in [5]. A proof of the correctness of this algorithm
is also provided in the reference.

For beta synapses (connections occurring after a main Rete match
memory), match information held in the source nodes is used to initialize
non-merged portions of the mini-Rete. For alpha synapses (connections
occurring before any main Rete match memories), all WMEs corre-
sponding to a particular top node are pushed through the mini-Rete.

For alpha synapses, since no memory is kept of the results of pat-
tern tests, the tests must be repeated even though some of the alpha
nodes may be mergeable. The unique mini-Rete structure from the top
node down through the first non-merged node is used to redo the alpha
pattern testing, while insuring that results are sent only to the mini-Rete.
After this use, if no other on-demand pattern use is anticipated, this
portion of the mini-Rete is no longer needed, and is discarded.

4.1. Clearing the Mini-Rete Non-Shared Memories

When the mini-Rete is first attached to the main Rete, its non-
shared result memories in the mini-Rete are empty. The update opera-
tion pushes tokens through the non-shared part, using an ADD
operation, to initialize the non-shared partial match memories.

If the mini-Rete represents a reusable demand-driven pattern
match, a subsequent match request needs to update the non-shared re-
sult memories. We implement the method of clearing the memories and
redoing the update, using the same algorithm as used initially. Alterna-
tively, one could accumulate at the interface synapses, lists of new,
modified, and changed partial match tokens, and use these to update the
mini-Rete; we viewed this as a poor space/time trade-off.

Given that the mini-Rete is cleared before each update, we chose
to do the clear operation following each use, in order to release the
memory used to hold the matches sooner.

4.2. Updating a Mini-Rete

RULE-Match algorithm updates non-shared part of a mini-Rete
using the existing partial match data, which are stored in source nodes
of beta synapses, or in the working memory (in case of alpha synapses)
[5]. The update is first done by using the beta synapses, then alpha
synapses.

This algorithm requires a specific ordering of the drain nodes of the
beta synapses to avoid duplicate or missing join results. The ordering
of the drain nodes is derived as a side-effect of the depth-first walk of
the mini-Rete from the bottom node. Conceptually a drain node of a
beta synapse corresponds to a resume node in the RULE-Match algo-
rithm, and the right (left) source node identified by the beta synapse
corresponds to a right (left) stop node. The drain nodes are ordered
from deepest (nearest the bottom) to the shallowest (nearest the top
nodes). For each ordered beta synapse designating a left input into a
drain node, tokens are sent from the result memory of the source node
designated in the synapse to the drain node’s left input, using an ADD
operation. Beta synapses designating only a right input into a drain node
are discarded.

Tokens at the drain nodes and below are processed using the
RUL-Match (Right-Update-Left) algorithm for generalized Retes.
RUL-Match is a Rete match algorithm used for processing a token when
it arrives at a node in a generalized Rete network. For completeness of
this paper, RUL-Match is briefly described below. For detailed de-
scription of RUL-Match algorithm, refer to [5].

Form new tokens by joining the token with the opposite prede-
cessor’s result memory elements. For each new token created, do
the next three steps:

1. Right distribution: for each right successor nodes, push the
new token to its successor nodes, from the shallowest to the
deepest order among the successor nodes (ties are arbitrarily
assigned). At each node pushed to, apply the RUL-Match
algorithm, recursively.

2. Update the node’s result memory according to the token’s
operation.

3. Left distribution: for each of the left successor nodes, push
the new token to successor nodes, from the deepest to
shallowest order (again, ties are arbitrarily assigned). At
each node pushed to, apply the RUL-Match algorithm
recursively.

After the beta synapses are used to update the mini-Rete, the alpha
synapses are used in arbitrary order. For each alpha synapse, the WMEs
associated with the top node are sent through the mini-Rete alpha pat-
tern match structures and on into the remaining part of the mini-Rete
using the RUL-Match algorithm for generalized Retes.

This particular updating algorithm depends on the fact that all beta
mini-Rete nodes that could be stop nodes are two input join nodes. This
is because partial matches in the main Rete associated with beta
synapses are only sent to left-side inputs of join nodes. For common
Rete algorithms, such as used in OPS5 and the Enhanced Common LISP
Production System [6], this is indeed the case. The approach could be
extended to cover other cases, as well.

129

Summary

We have described several concepts and functions that work to-
gether to provide efficient pattern matching operations for adding new
rule patterns and doing demand-driven Rete pattern matching in the
context of Rete algorithms, where the match pattern is not restricted to
be left associated but is arbitrary. Having demand-driven Rete pattern
matching extends the existing Rete algorithm in that it accommodates
pattern matching when demanded, as well as existing data-driven pattern
matching.

We first compile a match pattern into a mini-Rete. A mini-Rete is
merged with an existing main Rete by using the merge algorithm. As the
result of merge process, a new main Rete and a set of synapses are cre-
ated. Then, non-shared part of mini-Retes are updated using the
synapse nodes.

Among the advantages, some remarkable ones are as follows.

e Although we modify a ruleset we do not need to compile all rules
and run the production system again from the beginning. Instead
we reflect only the modifications to the existing Rete and update
the newly augmented part.

o Demand-driven matching does not activate patterns which are ir-
relevant to the demand-driven pattern match, which otherwise may
trigger a set of unwanted rules.

e Pattern once compiled and used could be reused later when re-
quested.

Several trade-offs have been described involving compilation issues
and space/time issues. The algorithms described are essentially those
used in the Enhanced Common Lisp Production System product [6], and
have proven themselves in practical experience.

References

[1] C. Forgy, "Rete: A fast algorithm for the many pattern/many object
pattern match problem", Artificial Intelligence 19, pp. 17-37, 1982.

[2] C. Forgy, OPSS user’s manual, Technical Report, Department of
Computer Science, Carnegie-Mellon University, 1981.

[3]1 L. Brownston, R. Farrell, E. Kant and N. Martin, Programming expert
systems in OPSS: an introduction to rule-based programming,
Addison-Wesley, 1985.

[4] M. Schor, T. Daly, H.S. Lee and B. Tibbitts, "Advances in Rete
pattern matching", Proceedings AAAI'86, Philadelphia, PA, pp.
226-232, 1986.

[5] H.S. Lee and M. Schor, "Match Algorithms for Generalized Rete
Networks'', submitted for publication, 1989. It is also available as
an IBM Research Report RC-14709, 1989.

{61 Enhanced Common LISP Production System - User’s Guide and Ref-
erence, IBM publication number SC38-7016, 1988.

